

How do hydro stations work?

Years 1-4 (ages 5-8)

Overview

Show your students the video "How do hydro power stations work?" www.meridianenergy.co.nz/who-we-are/our-power-stations/hydro

Curriculum areas	Achievement objectives	Years	Learning	Sucess criteria
Level 1-2				
The nature of science	Investigating in science Extend their experiences and personal explanations of the natural world through exploration, play, asking questions, and discussing simple models.	Years 1-4	Explore and experience the process of water turning into electricity.	Explain or illustrate how hydro stations work.
	Communicating in science			
	Build their language and develop their understanding of the many ways the natural world can be represented.			
	Participating and contributing			
	Explore and act on issues and questions that link their science learning to their daily living.			
Science - The physical world	Physical inquiry and physics concepts	how a water elect turbine uses gene enomena, such as the force and from forces, electricity energy from tism, light, sound, water to turn.	✓ Illustrate how electricity is	
	Explore everyday examples of physical phenomena, such as movement, forces, electricity and magnetism, light, sound, waves, and heat.		the force and energy from	generated from water.

What you'll need	
Cross section of a hydro power station	Electricity and water flow diagrams
worksheet for each student	Read and make instructions for
How do hydro stations work	making a turbine
video on the website	
360 degree footage of Ōhau A	
or Manapōuri power station	

Lesson progression

01. Get your students with a partner to talk about what they know about electricity. Go around the room and get each group to share their ideas.

02. Watch the 360 degree footage on the Meridian website. https://www.meridianenergy.co.nz/whare-ako

03. Have your students complete the "cross section of a hydro power station" worksheet. There are 2 options for you here. There is a cut and paste version suitable for years 0 - 2 and a writing version suitable for years 3 and 4. However choose the version that is suitable to your students. Cut and paste version for years 0 - 2.

04. Use the Ōhau A or Manapōuri water and electricity flow diagrams and get your students to draw the path the electricity takes in red from the generator to its destination. This is a good activity for the students to understand that the water flows back into the river system once it has generated electricity.

05. Your students can have a go at making a water turbine. Download the make a turbine instruction sheet. Read through these instructions with your students. They can do this individually or in groups.

Vocabulary

Dam	Lake	Reservoir
Hydro	Control gate	Tail race
Electricity	Generator	Transmission lines
Power house	Drive shaft	Transformer
Turbine	Intake	Earthfill dam
Runner	Penstock	Concrete
Gravity	Water	Water pressure
Spins	Kinetic energy	Electrical energy
Voltage	Switchyard	Network
Inlet gate	Potential energy	Canal
Tunnel	Hertz	National grid
Renewable	Flow	Force
Spillway	Mechanical energy	Blades
Axis	Buckets	Shaft
Rotor	Stator	Rotation

The vocabulary is useful to display on the wall for students to access at all times and to help them become familiar with these topic specific words.

Assessing your students

Learning Intentions

Students are learning to:

- » Explore and experience the process of water turning into electricity.
- » Understand how a hydro/water turbine uses the force and energy from water to turn.

Success Criteria

Students can:

- » Explain or illustrate how hydro stations work.
- » Illustrate how electricity is generated from water.

Notes to help you teach

- Typically, a dam stores water in a reservoir. Water released from the reservoir falls through a pipe called a penstock to a turbine. These turbines look like large wheels with wide spokes. The water hits the blades and pushes them to make the turbine spin. The turbine's rotation drives a generator to produce electricity. In other words, this spinning 'changes' the force of falling water into electricity.
- Most of Meridian's electricity is made from the energy of falling water. Our hydro stations generate enough electricity to power around 1.4 million homes each year.
- It's not possible to store large amounts of electricity. But it is possible to store water in dams.

Next steps

- » Book a visit from one of our engineers to run a **STEM programme** building earth dams.
- » Book a visit to tour one of **our Power stations**.

Ideas for play based learning

- » Build a dam in a water trough using different materials eg sand, rocks, dirt, clay etc. Which is better?
- » Build a river or a canal in a sandpit or by using a tarp on the ground.
- » Make a turbine from recycled materials.
- » Build a water wall with pool noodles or old pipes. These are like the penstocks.

Links to other resources

- » Power article by Alex Taylor School Journal Level 2 Aug 2011.
- » Hydro power facts by Science Kids https://www.sciencekids.co.nz/sciencefacts/energy/hydropower.html
- » Electricity by Science Kids https://www.sciencekids.co.nz/electricity.html
- » What is a water wheel Wonderopolis https://wonderopolis.org/wonder/what-is-a-waterwheel
- » NZ's Hydro electricity story https://teara.govt.nz/en/hydroelectricity
- » Hydro electricity by the Science learning hub https://www.sciencelearn.org.nz/resources/1574-hydro-power

